一盒中装有大小和质地均相同的12个小球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,求:(1)取出的小球是红球或黑球的概率;(2)取出的小球是红球或黑球或白球的概率.
(本小题满分12分)如图,三角形和梯形所在的平面互相垂直, ,,是线段上一点,.(Ⅰ)当时,求证:平面;(Ⅱ)求二面角的正弦值;(Ⅲ)是否存在点满足平面?并说明理由.
(本小题满分12分)已知数列的前项和为,且,(1)求数列的通项公式(2)数列的通项公式,求数列的前项和为
设数列满足:①;②所有项;③.设集合,将集合中的元素的最大值记为.换句话说,是数列中满足不等式的所有项的项数的最大值.我们称数列为数列的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)请写出数列1,4,7的伴随数列;(2)设,求数列的伴随数列的前之和;(3)若数列的前项和(其中常数),求数列的伴随数列的前项和.
如图,在海岸线一侧有一休闲游乐场,游乐场的前一部分边界为曲线段,该曲线段是函数,的图像,图像的最高点为.边界的中间部分为长千米的直线段,且.游乐场的后一部分边界是以为圆心的一段圆弧.(1)求曲线段的函数表达式;(2)曲线段上的入口距海岸线最近距离为千米,现准备从入口修一条笔直的景观路到,求景观路长;(3)如图,在扇形区域内建一个平行四边形休闲区,平行四边形的一边在海岸线上,一边在半径上,另外一个顶点在圆弧上,且,求平行四边形休闲区面积的最大值及此时的值.
已知分别是椭圆的左、右焦点,椭圆过点且与抛物线有一个公共的焦点.(1)求椭圆方程;(2)直线过椭圆的右焦点且斜率为与椭圆交于两点,求弦的长;(3)以第(2)题中的为边作一个等边三角形,求点的坐标.