已知函数.(1)求函数在区间上的最小值;(2)设,其中,判断方程在区间 上的解的个数(其中为无理数,约等于且有).
(本小题满分12分)如图所示,正方形和矩形所在平面相互垂直,是的中点.(1)求证:;(2)若直线与平面成45o角,求异面直线与所成角的余弦值.
(本小题满分12分)已知直线,(1)若直线过点(3,2)且,求直线的方程;(2)若直线过与直线的交点,且,求直线的方程.
已知函数若函数有两个不同的零点,函数有两个不同的零点.(1)若,求的值;(2)求的最小值.
已知函数.(1)求的值;(2)若在上单调增,在上单调减,求实数的取值范围;(3)设函数在区间上的最大值为,试求的表达式.
姜堰某化学试剂厂以x千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是千元.(1)要使生产该产品2小时获得利润不低于30千元,求的取值范围;(2)要使生产120千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求此最大利润.