已知数列的前项和,且满足.(1)求数列的通项.(2)若数列满足,为数列{}的前项和,求证.
(本小题满分14分)已知是互不相等的实数,求证:由和确定的三条抛物线至少有一条与轴有两个不同的交点.
(本小题满分14分)设与是函数的两个极值点.(1)试确定常数和的值;(2)试判断是函数的极大值点还是极小值点,并说明理由。
(本小题满分14分)已知命题;命题,若且为真,求的取值范围.
(本小题满分10分)直线与圆交于、两点,记△的面积为(其中为坐标原点).(1)当,时,求的最大值;(2)当,时,求实数的值.
(本小题满分8分)已知数列是首项为1,公比为2的等比数列,数列的前项和.(1)求数列与的通项公式;(2)求数列的前项和.