如图所示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的体积与侧面积.
.如图,把正三角形ABC分成有限个全等的小正三角形,且在每个小三角形的顶点上都放置一个非零实数,使得任意两个相邻的小三角形组成的菱形的两组相对顶点上实数的乘积相等.设点A为第一行,…,BC为第n行,记点A上的数为a,…第i行中第j个数为a(1≤j≤i).若a=(1)求a(2)试归纳出第n行中第m个数a表达式(用含n,m的式子表示,不必证明);(3)记S…+a,证明:n≤++…+≤
设函数f ( x ) = (a ÎN*), 又存在非零自然数m, 使得f (m ) =" m" , f (– m ) < –成立. (1) 求函数f ( x )的表达式; (2) 设{an}是各项非零的数列, 若对任意nÎN*成立, 求数列{an}的一个通项公式; 在(2)的条件下, 数列{an}是否惟一确定? 请给出判断, 并予以证明.
.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。(1)求f(1), f()的值;(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;(3)一个各项均为正数的数列{an}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.
.已知二次函数经过点(0,10),其导数,当()时,是整数的个数记为。(1)求数列的通项公式;(2)令,求数列的前n项()项和。
.已知定义在R上的函数f(x)=( a , b , c , d∈R )的图象关于原点对称,且x = 1时,f(x)取极小值。(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两面三刀点处的切线互相垂直?试证明你的结论;(Ⅲ)若∈[-1,1]时,求证:| f ()-f()|≤。