设a、b、c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤;(2)≥1
(本题满分12分)某商店经销一种洗衣粉,年销售总量为6000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为包,已知每次进货的运输劳务费为62.5元,全部洗衣粉一年的保管费为1.5元.(1)将该商店经销洗衣粉一年的利润(元)表示为每次进货量(包)的函数;(2)为使利润最大,每次应进货多少包?
(本小题满分14分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且,. (1)求证:平面; (2)设FC的中点为M,求证:∥平面; (3)求三棱锥F-CBE的体积.
(本小题满分14分)已知向量,,函数.(1)求函数的解析式;(2)当时,求的单调递增区间;(3)说明的图象可以由的图象经过怎样的变换而得到.
.(本小题满分12分)已知集合,,(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.
、(本小题满分14分)设函数 (Ⅰ)求的单调区间; (Ⅱ)当时,若方程在上有两个实数解,求实数t的取值范围; (Ⅲ)证明:当m>n>0时,