求矩阵N=的特征值及相应的特征向量.
(本小题满分13分) 已知,函数,记曲线在点处切线为与x轴的交点是,O为坐标原点。 (I)证明: (II)若对于任意的,都有成立,求a的取值范围。
(本小题满分13分) 如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。 (I)求证:C1D//平面ABB1A1; (II)求直线BD1与平面A1C1D所成角的正弦值; (Ⅲ)求二面角D—A1C1—A的余弦值。
(本小题满分13分) 一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、5,现从盒子中随机抽取卡片。 (I)若从盒子中有放回地抽取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率; (II)若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。
(本小题满分13分) 如图,在四边形ABCD中,AB=3,AD=BC=CD=2,A=60°。 (1)求的值; (2)求的面积。
(本小题满分12分) 如图,在正方体中,、分别是、中点 (1)求证:; (2)求证:; (3)棱上是否存在点,使平面,若存在,确定点位置;若不存在,说明理由.