二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
已知x,y满足约束条件(1)求目标函数z=2x-y的最大值和最小值;(2)若目标函数z=ax+y取得最大值的最优解有无穷多个,求a的值;(3)求z=x2+y2的取值范围.
已知α,β是三次函数f(x)=x3+ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),求动点(a,b)所在的区域面积S.
已知实数x,y满足不等式组,若目标函数z=y-ax取得最大值时的唯一最优解是(1,3),求实数a的取值范围.
已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.(1)求证:函数y=f(x)必有两个不同的零点;(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围;(3)是否存在这样的实数a,b,c及t使得函数y=f(x)在[-2,1]上的值域为[-6,12]?若存在,求出t的值及函数y=f(x)的解析式;若不存在,请说明理由.
设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>0,且0<x<m<n<,比较f(x)与m的大小.