有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1)求仅闯过第一关的概率;(2)记成功闯过的关数为ξ,求ξ的分布列.
(本小题满分15分)在数列中,,.(1)设.证明:数列是等差数列;(2)求数列的前项和.
如图,在三棱锥中,点分别是棱的中点. (1)求证://平面;(2)若平面平面,,求证:.
在△ABC中,角A,B,C的对边分别为,,,且.(1)求角的值; (2)若角,边上的中线=,求的面积.
已知为常数,且,函数, (是自然对数的底数).(1)求实数的值;(2)求函数的单调区间;(3)当时,是否同时存在实数和(),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.
如图,用铁丝弯成一个上面是半圆,下面是矩形的图形,其面积为,为使所用材料最省,底宽应为多少米?