有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1)求仅闯过第一关的概率;(2)记成功闯过的关数为ξ,求ξ的分布列.
某市今年11份曾发生H1N1流感,据统计,11月1日该市流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.
已知数列是等差数列, ;数列的前n项和是,且. (Ⅰ) 求数列的通项公式; (Ⅱ) 求证:数列是等比数列; (Ⅲ) 记,求的前n项和.
某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%。从2010年开始,每年将出现这样的局面,即原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化。 (1)设全县面积为1,2001年底绿化面积为a1=,经过n年绿化总面积为an+1。 求证:an+1=+an (2)至少需要多少年(年取整数,lg2=0.3010)的努力,才能使全县的绿化率达到60%?
已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1), a2=-,a3=f(x). (1)求x值; (2)求a2+a5+a8+…+a26的值.
已知数列满足,。 (1)求数列的通项公式; (2)求使得的正整数的集合M。