有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1)求仅闯过第一关的概率;(2)记成功闯过的关数为ξ,求ξ的分布列.
椭圆与轴负半轴交于点,为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接交于点D。 (1)如果,求椭圆的离心率; (2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。
已知在正方体中,分别是的中点,在棱上,且. (1)求证:; (2)求二面角的大小.
在一段时间内,某种商品价格(万元)和需求量之间的一组数据为:
(1)进行相关性检验; (2)如果与之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01) 参考公式及数据:,, 相关性检验的临界值表:
在△ABC中,,记,△ABC的面积为,且满足. (1)求的取值范围; (2)求函数的最大值和最小值.
已知函数 (I) 解关于的不等式 ; (II)若函数的图象恒在函数的上方,求实数的取值范围。