如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD,(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点在同一直线上).已知小明的身高是1.7m,请你帮小明求出楼高(结果精确到0.1m).
第一象限内的点A在某一反比例函数的图象上,过A作ABx轴,垂足为B,连接AO,已知△AOB的面积为4. ⑴求反比例函数的解析式⑵若点A的纵坐标为4,过点A的直线与x轴交于P(不与点B、O重合),且以A、P、B为顶点的三角形与△AOB相似,写出符合条件的点P的坐标.
如图,矩形中,为上一点,于.若,求:的长,以及四边形DCEF的面积。
在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上。(1)填空:∠ABC= °,BC= (2)判断△ABC与△DEF是否相似,并说明理由.(3)请在图中再画一个和△ABC相似但相似比不为1的格点三角形.
解方程:(4+4=8分)(1) (2)—=8