如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并加以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,________,________.求证:四边形ABCD是平行四边形.
如图,已知 ⊙ O 的直径 AB = 12 ,弦 AC = 10 , D 是 BC ̂ 的中点,过点 D 作 DE ⊥ AC ,交 AC 的延长线于点 E .
(1)求证: DE 是 ⊙ O 的切线;
(2)求 AE 的长.
某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量 y (单位:个)与销售单价 x (单位:元)有如下关系: y = − x + 60 ( 30 ⩽ x ⩽ 60 ) .
设这种双肩包每天的销售利润为 w 元.
(1)求 w 与 x 之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
请根据以上两图解答下列问题:
(1)该班总人数是 ;
(2)根据计算,请你补全两个统计图;
(3)观察补全后的统计图,写出一条你发现的结论.
如图1,矩形 OABC 的顶点 A , C 的坐标分别为 ( 4 , 0 ) , ( 0 , 6 ) ,直线 AD 交 BC 于点 D , tan ∠ OAD = 2 ,抛物线 M 1 : y = a x 2 + bx ( a ≠ 0 ) 过 A , D 两点.
(1)求点 D 的坐标和抛物线 M 1 的表达式;
(2)点 P 是抛物线 M 1 对称轴上一动点,当 ∠ CPA = 90 ° 时,求所有符合条件的点 P 的坐标;
(3)如图2,点 E ( 0 , 4 ) ,连接 AE ,将抛物线 M 1 的图象向下平移 m ( m > 0 ) 个单位得到抛物线 M 2 .
①设点 D 平移后的对应点为点 D ' ,当点 D ' 恰好在直线 AE 上时,求 m 的值;
②当 1 ⩽ x ⩽ m ( m > 1 ) 时,若抛物线 M 2 与直线 AE 有两个交点,求 m 的取值范围.
某学习小组的学生在学习中遇到了下面的问题:
如图1,在 ΔABC 和 ΔADE 中, ∠ ACB = ∠ AED = 90 ° , ∠ CAB = ∠ EAD = 60 ° ,点 E , A , C 在同一条直线上,连接 BD ,点 F 是 BD 的中点,连接 EF , CF ,试判断 ΔCEF 的形状并说明理由.
问题探究:
(1)小婷同学提出解题思路:先探究 ΔCEF 的两条边是否相等,如 EF = CF ,以下是她的证明过程
证明:延长线段 EF 交 CB 的延长线于点 G .
∵ F 是 BD 的中点,
∴ BF = DF .
∵ ∠ ACB = ∠ AED = 90 ° ,
∴ ED / / CG .
∴ ∠ BGF = ∠ DEF .
又 ∵ ∠ BFG = ∠ DFE ,
∴ ΔBGF ≅ ΔDEF ( AAS ) .
∴ EF = FG .
∴ CF = EF = 1 2 EG .
请根据以上证明过程,解答下列两个问题:
①在图1中作出证明中所描述的辅助线;
②在证明的括号中填写理由(请在 SAS , ASA , AAS , SSS 中选择).
(2)在(1)的探究结论的基础上,请你帮助小婷求出 ∠ CEF 的度数,并判断 ΔCEF 的形状.
问题拓展:
(3)如图2,当 ΔADE 绕点 A 逆时针旋转某个角度时,连接 CE ,延长 DE 交 BC 的延长线于点 P ,其他条件不变,判断 ΔCEF 的形状并给出证明.