(本小题满分14分)已知正项数列满足:, (1)求通项;(2)若数列满足,求数列的前项和.
如图,在四棱锥中,⊥底面,底面为正方形,,,分别是,的中点.(1)求证:平面;(2)求证:;(3)设PD=AD=, 求三棱锥B-EFC的体积.
设函数.(1)求的值域;(2)记△ABC的内角A,B,C的对边长分别为,,,若,求的值.
已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.
如图所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.