已知函数,. (1)当时,求的最小值; (2)若,求a的取值范围.
如图,平面直角坐标系中,射线()和()上分别依次有点、,……,,……,和点,,……,……,其中,,.且, ……).(1)用表示及点的坐标;(2)用表示及点的坐标;(3)写出四边形的面积关于的表达式,并求的最大值.
已知:函数 ,在区间上有最大值4,最小值1,设函数.(1)求、的值及函数的解析式;(2)若不等式在时恒成立,求实数的取值范围;(3)如果关于的方程有三个相异的实数根,求实数的取值范围.
已知:曲线上任意一点到点的距离与到直线的距离相等.(1)求曲线的方程;(2)如果直线交曲线于、两点,是否存在实数,使得以为直径的圆经过原点?若存在,求出的值;若不存在,说明理由.
已知,其中,.(1)求的最小正周期及单调递增区间;(2)在中,、、分别是角、、的对边,若,,面积为,求:边的长及的外接圆半径.
在长方体中,,用过,,三点的平面截去长方体的一个角后,留下如图的几何体,且这几何体的体积为120.(1)求棱的长;(2)求点到平面的距离.