已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-(1).求动点P的轨迹C方程;(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)
已知函数()的周期为. (Ⅰ)求的值及的解析式; (Ⅱ)在△ABC中,角A,B,C的对边分别是,且满足, 求的值.
已知函数 (Ⅰ)当,且是上的增函数,求实数的取值范围;; (Ⅱ)当,且对任意,关于的方程总有三个不相等的实数根,求实数的取值范围.
已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为. (Ⅰ)求椭圆的方程; (Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线与交于点,直线与交于点.若弦过椭圆的右焦点,求直线的方程.
如图,四棱锥的底面是直角梯形,,,和 是两个边长为2的正三角形,,为的中点,为的中点. (Ⅰ)求证:; (Ⅱ)求直线与平面所成角的正弦值.
若是各项均不为零的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和. (Ⅰ)求和; (Ⅱ)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.