某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(1)求选手甲进入复赛的概率;(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小
设曲线有4个不同的交点. (Ⅰ)求θ的取值范围; (Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.
某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐标系并写出该双曲线方程;
已知椭圆的方程为,点的坐标满足过点的直线与椭圆交于、两点,点为线段的中点,求: (1)点的轨迹方程; (2)点的轨迹与坐标轴的交点的个数.
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元. 用表示经销一辆汽车的利润.(1)求上表中的值;(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率;(3)求的分布列及数学期望.