寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望.
选修4-1:几何证明选讲 如图,中,的平分线交于点,过点A,且和切于点,和,分别交于点、,设交于点连接. (1)求证:; (2)已知求的值.
设函数. (Ⅰ)求函数的单调区间; (Ⅱ)设是否存在极值,若存在,请求出极值;若不存在,请说明理由; (Ⅲ)当时,证明:.
已知椭圆C: 的离心率为,且过点(1,). (1)求椭圆C的方程; (2)设与圆相切的直线交椭圆C与A,B两点,求面积的最大值,及取得最大值时 直线的方程.
已知椭圆:. (Ⅰ)求椭圆的离心率; (Ⅱ)设直线与椭圆交于不同两点,若点满足,求实数的值.
已知等差数列的前n项和为,且. (1)求数列的通项公式与; (2)若,求数列的前n项和.