已知椭圆:.(Ⅰ)求椭圆的离心率;(Ⅱ)设直线与椭圆交于不同两点,若点满足,求实数的值.
已知和均为给定的大于1的自然数,设集合,集合.
(Ⅰ)当时,用列举法表示集合;
(Ⅱ)设,,其中,.证明:若,则.
设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点为 F 1 , F 2 ,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过原点 O 的直线 l 与该圆相切,求直线 l 的斜率.
如图,在四棱锥中,,,,点为棱的中点. (1)证明:; (2)求直线与平面所成角的正弦值; (3)若为棱上一点,满足,求二面角的余弦值.
某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率; (2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
已知函数,. (1)求的最小正周期; (2)求在闭区间上的最大值和最小值.