设函数.(Ⅰ)求函数的单调区间;(Ⅱ)设是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)当时,证明:.
(本小题满分14分) 已知椭圆的两焦点分别为,且椭圆上的点到的最小距离为. (Ⅰ)求椭圆的方程; (Ⅱ)过点作直线交椭圆于两点,设线段的中垂线交轴于,求m的取值范围.
(本小题满分12分) 已知函数,. (Ⅰ)当时,求的单调递增区间; (Ⅱ)若的图象恒在的图象的上方,求实数的取值范围.
(本小题满分12分) 已知直线:交抛物线于两点,为坐标原点. (Ⅰ)求的面积; (Ⅱ)设抛物线在点处的切线交于点,求点的坐标.
(本小题满分12分) 已知函数在时有极值. (Ⅰ)求的解析式; (Ⅱ)求函数在上的最大值、最小值.
(本小题满分12分) 若数列的通项公式,记. (Ⅰ)计算的值; (Ⅱ)由(Ⅰ)猜想,并证明.