甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望.
在直角坐标系xOy中,已知点P,曲线C的参数方程为(φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。(1)判断点P与直线l的位置关系,说明理由;(2)设直线l与直线C的两个交点为A、B,求的值。
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D。(1)求证:CE2 = CD · CB;(2)若AB = BC = 2,求CE和CD的长。
已知函数,。(1)若对任意的实数a,函数与的图象在x = x0处的切线斜率总想等,求x0的值;(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。
设椭圆C:的两个焦点为F1、F2,点B1为其短轴的一个端点,满足,。(1)求椭圆C的方程;(2)过点M 做两条互相垂直的直线l1、l2设l1与椭圆交于点A、B,l2与椭圆交于点C、D,求的最小值。
已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE = ,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。(1)求证:MN⊥EA;(2)求四棱锥M – ADNP的体积。