(1)已知定点、,动点N满足(O为坐标原点),,,,求点P的轨迹方程. (2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,(ⅰ)设直线的斜率分别为、,求证:为定值;(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.
(满分12分)定义在R上的奇函数有最小正周期4,且时,。 (1)求在上的解析式; (2)判断在(0,2)上的单调性,并给予证明; (3)当为何值时,关于方程在上有实数解?
(满分12分)是等差数列的前项和,,。 (1)求的通项公式; (2)设(是实常数,且),求的前项和。
(满分12分)设命题P:关于的不等式:的解集是R,命题Q:函数的定义域为R,若P或Q为真,P且Q为假,求的取值范围。
(满分10分)已知函数 (1)求的最小正周期和单调递增区间; (2)求在区间上的取值范围。
(满分12分)已知函数。(为常数,) (1)若是函数的一个极值点,求的值; (2)求证:当时,在上是增函数; (3)若对任意的,总存在,使不等式成立,求实数的取值范围。