已知各项为正数的数列中,,对任意的,成等比数列,公比为;成等差数列,公差为,且.(1)求的值;(2)设,证明:数列为等差数列;(3)求数列的前项和.
(本小题满分10分)选修4-4:极坐标系与参数方程在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点到上点的距离的最小值.
(本小题满分10分)选修4—1:几何证明选讲如图,已知切⊙于点,割线交⊙于、两点,的平分线和、分别交于点、.求证:(1); (2).
(本小题满分12分)设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立.
(本小题满分12分)已知双曲线:的一条渐近线为,右焦点到直线的距离为.(1)求双曲线的方程;(2)斜率为且在轴上的截距大于的直线与曲线相交于、两点,已知,若证明:过、、三点的圆与轴相切.
(本小题满分12分)为迎接2015年在兰州举行的“中国兰州国际马拉松赛”,某单位在推介晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的个小球,分别印有“兰州马拉松”和“绿色金城行”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“兰州马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取次.已知从盒中抽取两个小球不都是“绿色金城行”标志的概率为.(1)求盒中印有“兰州马拉松”标志的小球个数; (2)用表示某位嘉宾抽奖的次数,求的分布列和期望.