已知各项为正数的数列中,,对任意的,成等比数列,公比为;成等差数列,公差为,且.(1)求的值;(2)设,证明:数列为等差数列;(3)求数列的前项和.
如图,在空间四边形SABC中,AC、BS为其对角线,O为△ABC的重心, 试证:(1)(;(2).
设函数上两点,若,且P点的横坐标为. (Ⅰ)求P点的纵坐标; (Ⅱ)若求; (Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
设函数。 (Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程; (Ⅱ)若函数在区间内不单调,求实数的取值范围。
已知=(cosα,sinα),=(cosβ,sinβ),与之间有关系|k+|=|-k|,其中k>0,(Ⅰ)用k表示; (Ⅱ)求·的最小值,并求此时与的夹角的大小。
已知函数,其中为常数. (1)当时,求函数的单调递增区间; (2)若任取,求函数在上是增函数的概率.