平行四边形中,,,且,以BD为折线,把△ABD折起,,连接AC.(1)求证:;(2)求二面角B-AC-D的大小.
在三棱锥中,是边长为的正三角形,平面⊥平面,,、分别为、的中点. (1)证明:⊥; (2)求三棱锥的体积.
已知圆交于两点. (1)求过A、B两点的直线方程; (2)求过两点且圆心在直线上的圆的方程.
已知集合,,,. (1)求; (2)若,求实数的取值范围.
在数列和中,,,,其中且,. (Ⅰ)若,,求数列的前项和; (Ⅱ)证明:当时,数列中的任意三项都不能构成等比数列; (Ⅲ)设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.