已知函数,.(Ⅰ)求函数的最小正周期与单调增区间;(Ⅱ)求函数在上的最大值与最小值.
已知{an}是正项数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上.(1)求数列{an}的通项公式;(2)若列数{bn}满足b1=1,bn+1=bn+2,求证:bnbn+2<b.
设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
设a为实数,函数f(x)=ex﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.
在正项数列{an}中,a1=1,点An()在曲线y2﹣x2=1上,数列{bn}中,点(bn,Tn)在直线y=﹣x+1上,其中Tn是数列{bn}的前n项和.(1)求数列{an},{bn}的通项公式an,bn;(2)若cn=an•bn,数列{cn}的前n项和Sn.
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.