已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为,为坐标原点.(1)求椭圆的方程.(2)设斜率为的直线与相交于、两点,记面积的最大值为,证明:.
(本小题满分12分)已知集合,,若,求实数的取值范围。
(本小题16分)设双曲线:的焦点为F1,F2.离心率为2。(1)求此双曲线渐近线L1,L2的方程;(2)若A,B分别为L1,L2上的动点,且2,求线段AB中点M的轨迹方程,并说明轨迹是什么曲线。
(本小题满分16分)如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点.(1)求证:PD⊥平面;(2)求直线与平面所成的角的正弦值;(3)求点到平面的距离.
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长; (2)求cos< >的值; (3)求证:A1B⊥C1M.