已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为,为坐标原点.(1)求椭圆的方程.(2)设斜率为的直线与相交于、两点,记面积的最大值为,证明:.
根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线拟合(,单位为小时,表示气温,单位为摄氏度,,),现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高。(1)求这条曲线的函数表达式;(2)求这一天19时整的气温。
已知圆C:内有一点P(2,2),过点P作直线交圆C于A、B两点。(1)当经过圆心C时,求直线的方程;(2)当弦AB的长为时,写出直线的方程。
已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
若关于的不等式的解集是,的定义域是, 若,求实数的取值范围。
若是函数在点附近的某个局部范围内的最大(小)值,则称是函数的一个极值,为极值点.已知,函数.(Ⅰ)若,求函数的极值点;(Ⅱ)若不等式恒成立,求的取值范围.(为自然对数的底数)