已知是椭圆上两点,点M的坐标为.(1)当两点关于轴对称,且为等边三角形时,求的长;(2)当两点不关于轴对称时,证明:不可能为等边三角形.
已知函数,(为常数),直线与函数、的图象都相切,且与函数图象的切点的横坐标为.(1)求直线的方程及的值;(2)若 [注:是的导函数],求函数的单调递增区间;(3)当时,试讨论方程的解的个数.
如图,焦距为的椭圆的两个顶点分别为和,且与n,共线.(1)求椭圆的标准方程;(2)若直线与椭圆有两个不同的交点和,且原点总在以为直径的圆的内部,求实数的取值范围.
若正数项数列的前项和为,首项,点,在曲线上.(1)求,;(2)求数列的通项公式;(3)设,表示数列的前项和,若恒成立,求及实数的取值范围.
在中,角A,B,C所对的边分别为a,b,c,已知.(1)当,且的面积为时,求a的值;(2)当时,求的值.
某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.