某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
已知椭圆过点,且离心率, (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点.,且线段的垂直平分线过定点,求的取值范围。
数列{an}满足a1=1,a2=2,an+2=(1+cos2)an+sin,n=1.2.3… (1)求a3.a4并求数列{an}的通项公式 (2)设bn=,令 Sn=,求 Sn
(本小题满分13分)设圆C满足:(1)截轴所得弦长为2;(2)被轴分成两段圆弧,其弧长的比为5∶1.在满足条件(1).(2)的所有圆中,求圆心到直线:3-4=0的距离最小的圆的方程.
(本小题满分13分)已知函数 (Ⅰ)当时,解不等式>; (Ⅱ)讨论函数的奇偶性,并说明理由.
已知△ABC的角A.B.C所对的边分别是a.b.c,设向量,, (1)若,求证△ABC为等腰三角形; (2)若,边长,角,求△ABC的面积.