某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
(本小题满分10分)选修4—5:不等式选讲 已知函数. (1)若当时,恒成立,求实数的取值; (2)当时,求证:.
(本小题满分10分)选修4—4:坐标系与参数方程 在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系.曲线的极坐 标方程是,直线的参数方程是. (1)求直线的直角坐标方程和曲线的参数方程; (2)求曲线上的动点到直线的距离的范围.
(本小题满分10分)选修4—1:几何证明选讲 如图,在直径的延长线上任取一点,过点做直线与交于点、,在上取一点,使,连接,交于. (1)求证:、、、四点共圆; (2)若,求的值.
(本小题满分12分)设函数. (1)若曲线在点处的切线与轴垂直,求的极值; (2)当时,若不等式在区间上有解,求实数的取值范围.
(本小题满分12分)已知椭圆的离心率,左、右焦点分别是,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (1)求椭圆的标准方程; (2)设为椭圆上不在轴上的一个动点,过点作的平行线交椭圆与两个不同的点,记,令,求的最大值.