某检修小组乘坐一辆汽车沿公路修输电线路,约定前进为正,后退为负,他们从A地出发到收工时,走过的路程记录如下:(单位:千米)+15,-6,+7,-2.5,-9,+3.5,-7,+12,-6,-11.5问:(1)他们收工时,在A点的什么方向?距A地多远?(2)汽车每千米耗油0.3升,从出发到返回A地共耗油多少升?
如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→ C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒). (1)求经过A、B、C三点的抛物线的解析式; (2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式; (3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值,若不能,请说明理由; (4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由.
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润(元)与国内销售数量(千件)的关系为:若在国外销售,平均每件产品的利润(元)与国外的销售数量t(千件)的关系为: (1)用的代数式表示t为:t=;当0<≤4时,与的函数关系式为:=;当4≤<时,=100; (2)求每年该公司销售这种健身产品的总利润W(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围; (3)该公司每年国内、国外的销量各为多少时,可使公司每年的总利润最大?最大值为多少?
如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数)
为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:
如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.
如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB. (1)求证:DC为⊙O的切线; (2)若⊙O的半径为3,AD=4,求AC的长.