(本小题满分12分)直四棱柱中,底面为菱形,且,为延长线上的一点,且.(Ⅰ) 求证:面;(Ⅱ)求四面体的体积.
(本小题满分12分).已知圆与直线相切。 (1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程; (2)已知点A,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线 AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.
(满分12分)设为数列的前项和,对任意的,都有为常数,且. (1)求证:数列是等比数列; (2)设数列的公比,数列满足,求数列的通项公式; (3)在满足(2)的条件下,求数列的前项和.
(本小题满分12分) (1)求的最小值;(2)若≥在内恒成立,求的取值范围
(本小题满分12分)如图,已知平面,平面,△为等边三角形,,为的中点. (1) 求证:平面; (2) 求证:平面平面; (3) 求直线和平面所成角的正弦值.
(本小题满分12分)定义在R上的奇函数有最小正周期4,且时,。 ⑴求在上的解析式; ⑵判断在上的单调性,并给予证明; ⑶当为何值时,关于方程在上有实数解?