设函数.(1) 求的单调区间与极值;(2)是否存在实数,使得对任意的,当时恒有成立.若存在,求的范围,若不存在,请说明理由.
(本小题15分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验, 设表示四次实验结束时实验成功的次数与失败的次数之差的绝对值.(1)求随机变量的分布列及的数学期望;(2)记“不等式的解集是实数集R”为事件A,求事件A发生的概率.
(本小题15分)已知△ABC三个顶点的坐标分别是A(0,2),B(1,1),C(1,3).若△ABC在一个切变变换T作用下变为△A1B1C1,其中B(1,1)在变换T作用下变为点B1(1,-1).(1)求切变变换T所对应的矩阵M;(2)将△A1B1C1绕原点按顺时针方向旋转45°后得到△A2B2C2.求B1变化后的对应点B2的坐标.
(本小题14分)在平面直角坐标系中,曲线C1的参数方程为 (a>b>0, 为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点对应的参数.与曲线C2交于点.(1)求曲线C1,C2的直角坐标方程;(2),是曲线C1上的两点,求 的值.
(本小题14分)在极坐标系中,已知到直线l:的距离为3.(1)求m的值.(2)设P是直线l上的动点,点Q在线段OP上,满足,求点Q的轨迹方程.
如图,已知抛物线的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.