如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程; (2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.
(本小题满分12分) 设函数,. (1)若,求的最大值及相应的的集合; (2)若是的一个零点,且,求的值和的最小正周期.
已知抛物线:(),焦点为,直线交抛物线于、两 点,是线段的中点,过作轴的垂线交抛物线于点, (1)若抛物线上有一点到焦点的距离为,求此时的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。
如图,函数图像与x轴相切于原点。 (1)求的值; (2)若,设,若在上至少存在一点,使得成立,求实数的取值范围.
已知椭圆的离心率为,点是椭圆上一定点,直线交椭圆于不同的两点、. (1)求椭圆方程 (2)求的取值范围.
已知命题:“椭圆的焦点在x轴上” ,命题:只有一个实数满足不等式. 若命题“p且q”是真命题,求实数a的值.