三棱锥V-ABC中,VA=VB=AC=BC=3,AB=2,VC=7,画出二面角V-AB-C的平面角,并求它的余弦值。
(本小题满分12分)已知抛物线y2="2px" (p>0)上点T(3,t)到焦点F的距离为4. (Ⅰ)求t,p的值; (Ⅱ)设A、B是抛物线上分别位于x轴两侧的两个动点,且 (其中 O为坐标原点). (ⅰ)求证:直线AB必过定点,并求出该定点P的坐标; (ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.
(本小题满分12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.(Ⅰ)当点E为BC的中点时, 证明EF//平面PAC;(Ⅱ)求三棱锥E-PAD的体积;(Ⅲ)证明:无论点E在边BC的何处,都有PEAF.
(本小题满分10分)选修4—5:几何选讲如图,为直角三角形,,以AB为直径的圆交AC于点E,点D是BC边的中点,连接OD交圆O于点M,求证:(Ⅰ)O、B、D、E四点共圆;(Ⅱ).
(本小题满分12分)已知函数R,曲线在点处的切线方程为.(Ⅰ)求的解析式;(Ⅱ)当时,恒成立,求实数的取值范围;
(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查.(Ⅰ)从四个社团中各抽取多少人?(Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.