已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.
(本小题满分14分)已知二次函数,关于的不等式的解集为,(),设.(1)求的值;(2)R如何取值时,函数存在极值点,并求出极值点;(3)若,且,求证:N.
(本小题满分13分)已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.(1) 求椭圆的方程;(2)是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
(本小题满分12分)如图,在正三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点.(1)求证:∥平面;(2)若为上的动点,当与平面所成最大角的正切为时,求平面 与平面所成二面角(锐角)的余弦值.
(本小题满分12分)已知数列的前项和(其中为常数),且, .(1)求;(2)求数列的前项和.
(本小题满分12分)“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;(3)若甲乙两小组各进行2次试验,设试验成功的总次数为,求的期望.