(本小题满分12分)如图,在正三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点.(1)求证:∥平面;(2)若为上的动点,当与平面所成最大角的正切为时,求平面 与平面所成二面角(锐角)的余弦值.
设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
在中角A、B、C所对的边分别为a、b、c,面积为S.已知(Ⅰ)求;(Ⅱ)若,求S的最大值.
一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.(Ⅰ)求“抽取的卡片上的数字满足”的概率;(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
已知函数f(x)= sinx×cosx-cos2x+.(Ⅰ)化简函数f(x),并用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);(Ⅱ)当时,求函数的最大值和最小值及相应的的值.
已知函数,其中为常数. (Ⅰ)若函数在区间上单调,求的取值范围;(Ⅱ)若对任意,都有成立,且函数的图象经过点,求的值。