设是公比大于的等比数列,为数列的前项和.已知,且,,构成等差数列.(1)求数列的通项公式;(2)令求数列的前项和.
已知函数.(1)当时,求的零点;(2)若方程有三个不同的实数解,求的值;(3)求在上的最小值.
已知抛物线C:的焦点为F,直线 交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点. (1)若直线AB过焦点F,求的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由.
如图,在三棱锥中,△PAB和△CAB都是以AB为斜边的等腰直角三角形,若,D是PC的中点.(1)证明:;(2)求AD与平面ABC所成角的正弦值.
已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.
已知,,记函数.(1)求函数的最大以及取最大值时的取值集合;(2)设的角所对的边分别为,若,,求面积的最大值.