已知函数,函数是区间上的减函数.(1)求的最大值;(2)若恒成立,求的取值范围;(3)讨论关于的方程的根的个数.
(14分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)(Ⅰ)将日利润(元)表示成日产量(件)的函数;(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值
已知函数f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.(1)求a,b的值;(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值.
已知2≤()x-2,求函数y=2x-2-x的值域.
已知命题p:∀x∈[1,2],x2-a≥0.命题q:∃x0∈R,使得x+(a-1)x0+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围