如图,2012年4月10日,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A地侦查发现,在南偏东60°方向的B地,有一艘某国军舰正以每小时13海里的速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国渔民,此时,C地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C地救援我国渔民,能不能及时赶到?(≈1.41,≈1.73,=2.45).
已知四边形 ABCD 内接于 ⊙O ,对角线 BD 是 ⊙O 的直径.
(1)如图1,连接 OA,CA ,若 OA⊥BD ,求证: CA 平分 ∠BCD ;
(2)如图2, E 为 ⊙O 内一点,满足 AE⊥BC,CE⊥AB .若 BD=3 3 , AE=3 ,求弦 BC 的长.
如图, O,R 是同一水平线上的两点,无人机从 O 点竖直上升到 A 点时,测得 A 到 R 点的距离为 40m , R 点的俯角为 24.2° ,无人机继续竖直上升到 B 点,测得 R 点的俯角为 36.9° .求无人机从 A 点到 B 点的上升高度 AB (精确到 0.1m ).
参考数据: sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75 .
【观察思考】
【规律发现】
请用含 n 的式子填空:
(1)第 n 个图案中“◎”的个数为_____;
(2)第1个图案中“★”的个数可表示为 1 × 2 2 ,第 2 个图案中“★”的个数可表示为 2 × 3 2 ,第 3 个图案中“★”的个数可表示为 3 × 4 2 ,第 4 个图案中“★”的个数可表示为 4 × 5 2 ,……,第 n 个图案中“★”的个数可表示为_____.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数 n ,使得连续的正整数之和 1+2+3+……+n 等于第 n 个图案中“◎”的个数的 2 倍.
根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨 10% ,乙地降价 5 元.已知销售单价调整前甲地比乙地少 10 元,调整后甲地比乙地少 1 元,求调整前甲、乙两地该商品的销售单价.
先化简,再求值: x2 + 2 x + 1 x + 1 ,其中 x= 2 -1 .