已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.
已知,.(1)若的单调减区间是,求实数a的值;(2)若对于定义域内的任意x恒成立,求实数a的取值范围;(3)设有两个极值点, 且.若恒成立,求m的最大值.
已知定点A(1,0),B (2,0) .动点M满足,(1)求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。(1)求椭圆的方程;(2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。
设函数.(1)求f(x)的单调区间和极值;(2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.
已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.