已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.
函数在内只取到一个最大值和一个最小值,且当时,;当时,.(1)求此函数的解析式;(2)求此函数的单调递增区间.
函数的一段图象过点(0,1),如图所示.(1)求函数的表达式;(2)将函数的图象向右平移个单位,得函数的图象,求的最大值,并求出此时自变量x的集合.
如图所示,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3 cm,周期为3 s,且物体向右运动到A点(距平衡位置最远处)开始计时.(1)求物体离开平衡位置的位移x(cm)和时间t(s)之间的函数关系式;(2)求该物体在t=5 s时的位置.
已知向量,,其中,, 试计算及的值; 求向量与的夹角的正弦值.
如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行. (1)求椭圆的离心率; (2)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.