已知定点A(1,0),B (2,0) .动点M满足,(1)求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
已知函数. (1)若曲线在点处的切线与直线垂直,求实数的值. (2)若,求的最小值; (3)在(Ⅱ)上求证:.
设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n项和为
已知向量. (1)若,求; (2)设的三边满足,且边所对应的角的大小为,若关于的方程有且仅有一个实数根,求的值.
已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD. (Ⅰ)求证:DF⊥平面PAF; (Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.
我校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题. (1)求全班人数及分数在[80,90)之间的频数; (2)估计该班的平均分数,并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.