已知定点A(1,0),B (2,0) .动点M满足,(1)求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(本小题满分10分)某公司通过报纸和电视两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与报纸广告费用x1(万元)及电视广告费用x2(万元)之间的关系有如下经验公式:R=-2x12-x22+13x1+11x2-28. (1)若提供的广告费用共为5万元,求最优广告策略.(即收益最大的策略,其中收益=销售收入-广告费用) (2)在广告费用不限的情况下,求最优广告策略
(本小题满分10分)已知函数f(x)=的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B. (1)当m=3时,求A∩(∁RB); (2)若A∩B={x|-1<x<4},求实数m的值.
(本小题满分14分)已知函数是奇函数,且满足 (1)求实数、的值; (2)试证明函数在区间单调递减,在区间单调递增; (3)是否存在实数同时满足以下两个条件: ①不等式对恒成立;②方程在上有解. 若存在,试求出实数的取值范围,若不存在,请说明理由.
(本小题满分14分)某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
(1)求图中a的值; (2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分; (3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
(本小题满分13分)设关于的一元二次方程. (1)若是从、、、四个数中任取的一个数,是从、、三个数中任取的一个数,求上述方程有实根的概率; (2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.