已知关于x的函数(1)当时,求函数的极值;(2)若函数没有零点,求实数a取值范围.
如图,在四棱锥中,底面是边长为的正方形,,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.
已知椭圆:,直线交椭圆于两点.(Ⅰ)求椭圆的焦点坐标及长轴长;(Ⅱ)求以线段为直径的圆的方程.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)当时,求直线的方程.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)记函数的最小值为,求证:.
已知椭圆:经过点,.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆于两点,求面积的最大值.