如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,. (1)求证:OD//平面VBC; (2)求证:AC⊥平面VOD; (3)求棱锥的体积.
已知椭圆的两个焦点为,离心率.(1)求椭圆的方程;(2)设直线,若与椭圆交于两点,且等于椭圆的短轴长,求 的值;(3)若直线,若与椭圆交于两个不同的点A和B,且使,问这样的直线存在吗?若存在求的值,若不存在说明理由。
已知直线为曲线在点处的切线,为该曲线的另外一条切线,且.(1)求直线、的方程;(2)求由直线、及轴所围成的三角形的面积.
设命题p:方程表示双曲线;命题q:(1)若命题p为真命题,求实数m的取值范围.(2)若命题为真命题,求实数m的取值范围.
动点P到定点D(1,0)的距离与到直线:的距离相等,动点P形成曲线记作C。(1)求动点P的轨迹方程(2)过点Q(4,1)作曲线C的弦AB,恰被Q平分,求AB所在直线方程.
如图,四棱锥P—ABCD的底面为菱形且,PA⊥底面ABCD,AB=2,PA=,E为PC的中点。(1)求直线DE与平面PAC所成角的大小;(2)求二面角E—AD—C的余弦值。