已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.(1)若AB=,求k的值;(2)求证:不论k取何值,以AB为直径的圆恒过点M.
如图所示,已知平面α∥平面β,点P是平面α、β外一点,且直线PB分别与α、β相交于A、B,直线PD分别与α、β相交于C、D. (1)求证:AC∥BD; (2)如果PA=4 cm,AB=5 cm,PC=3 cm,求PD的长.
如图,以梯形ABCD的对角线AC及腰AD为邻边作平行四边形ACED,DC的延长线交BE于点F,求证:EF=BF.
如图,在▱ABCD中,设E和F分别是边BC和AD的中点,BF和DE分别交AC于P、Q两点. 求证:AP=PQ=QC.
如图所示,在梯形ABCD中,已知AD∥BC,DC⊥BC,∠B=60°,BC=AB,E为AB的中点. 求证:△ECD为等边三角形.
已知实数x,y满足:|x+y|<,|2x-y|<,求证:|y|<.