如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.
(本小题满分12分) 直线与轴,轴分别相交于A、B两点,以AB为边做等边,若平面内有一点使得与的面积相等,求的值.
(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD
(本小题满分10分) 如图,已知三角形的顶点为A(2, 4),B(0,-2),C(-2,3), 求: (Ⅰ)AB边上的中线CM所在直线的一般方程; (Ⅱ)求△ABC的面积.
已知函数. (1)若曲线在点处的切线与直线垂直,求函数的单调区间; (2)若对于都有成立,试求的取值范围; (3)记.当时,函数在区间上有两个零点,求实数的取值范围.
已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数. (1)求椭圆C的方程; (2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点. ①求证:直线MA,MB的斜率之积为定值; ②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.