某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校,求抽取的2所学校均为小学的概率.
已知函数图象上的一个最高点为,由这个最高点到相邻最低点间的曲线与轴相交于,并写出这个函数的单调区间.
若数列的前项和是二项展开式中各项系数的和. (Ⅰ)求的通项公式; (Ⅱ)若数列满足,且,求数列的通 项及其前项和; (III)求证:.
已知椭圆的中心在坐标原点,左顶点,离心率,为右焦点,过焦点的直线交椭圆于、两点(不同于点). (Ⅰ)求椭圆的方程; (Ⅱ)当时,求直线PQ的方程; (Ⅲ)判断能否成为等边三角形,并说明理由.
射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,击中两个飞靶得2分,击中一个飞靶得1分,不击中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为,第二枪命中率为,该运动员如进行2轮比赛. (Ⅰ)求该运动员得4分的概率为多少? (Ⅱ)若该运动员所得分数为,求的分布列及数学期望.
已知函数,是的一个极值点. (Ⅰ)求的单调递增区间; (Ⅱ)若当时,恒成立,求的取值范围.