一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
已知直线被抛物线截得的弦长为20,为坐标原点.(1)求实数的值;(2)问点位于抛物线弧上何处时,△面积最大?
已知将圆上的每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C;设,平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.(1)求曲线的方程;(2)求m的取值范围.
在抛物线上求一点,使该点到直线的距离为最短,求该点的坐标
椭圆上有一点M(-4,)在抛物线(p>0)的准线l上,抛物线的焦点也是椭圆焦点.(1)求椭圆方程;(2)若点N在抛物线上,过N作准线l的垂线,垂足为Q距离,求|MN|+|NQ|的最小值.
设抛物线()的焦点为F,经过点 F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥X轴.证明直线AC经过原点O.