)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.
已知数列满足:. (Ⅰ)求; (Ⅱ)设,求数列的通项公式; (Ⅲ)设,不等式恒成立时,求实数的取值范围.
已知向量,,函数 (Ⅰ)若,求的值; (Ⅱ)在锐角中,角的对边分别是,且满足,求的取值范围.
某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组. (Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数; (Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实 验,求选出的两名同学中恰有一名女同学的概率;
已知函数图象上点处的切线方程为. (Ⅰ)求函数的解析式; (Ⅱ)函数,若方程在上恰有两解,求实数的取值范围
已知点是离心率为的椭圆C:上的一点。斜率为直线BD交椭圆C于B、D两点,且A、B、D三点不重合。 (Ⅰ)求椭圆C的方程; (Ⅱ)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?