如图,在三棱柱中,侧面为菱形,且,,是的中点.(1)求证:平面平面;(2)求证:∥平面.
(本小题满分12分)已知为坐标原点,向量,,点是直线上一点,且; (1)设函数, ,讨论的单调性,并求其值域; (2)若点、、共线,求的值。
(本小题满分12分)某班从6名班干部中(男生4人,女生2人)选3人参加学校义务劳动;(1)求男生甲或女生乙被选中的概率; (2)在男生甲被选中的情况下,求女生乙也被选中的概率; (3)设所选3人中女生人数为,求的分布列及数学期望。
在直角坐标系xOy中,以O为圆心的圆与直线相切。 (1)求圆O的方程。 (2)圆O与x轴相交于A、B两点,圆O内的动点P使|PA|,|PO|,|PB|成等比数列,求·的取值范围.
已知向量m=(cos,1),n=(sin,cos2). (1)若=1,求的值; (2)记f(x)=,在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
复数z1=3+4i,z2=0,z3=c+(2c-6)i在复平面内对应的点分别为A、B、C,若∠BAC是钝角,求实数c的取值范围.