一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
已知函数在区间上为单调增函数,求的取值范围.
抛物线的焦点在轴正半轴上,过斜率为的直线和轴交于点,且(为坐标原点)的面积为,求抛物线的标准方程.
(本小题满分12分) 设函数R,求函数在区间上的最小值.
已知双曲线的渐近线方程为,并且经过点,求双曲线的标准方程.
已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为. (1)求椭圆C的方程; (2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.