一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
设等差数列的前项和为,若. (Ⅰ)求数列的通项公式; (Ⅱ)设,若,试比较与的大小.
如图,在中,,垂足为,且. (Ⅰ)求的大小; (Ⅱ)设为的中点,已知的面积为15,求的长
(本小题满分14分)在周长为定值的中,已知,动点的运动轨迹为曲线G,且当动点运动时,有最小值. (1) 以所在直线为轴,线段的中垂线为轴建立直角坐标系,求曲线的方程; (2) 过点作圆的切线交曲线于,两点.将线段MN的长|MN|表示为的函数,并求|MN|的最大值.
(本小题满分13分)已知,函数,. (1)判断函数在区间上的单调性(其中为自然对数的底数); (2)是否存在实数,使曲线在点处的切线与轴垂直 若存在,求出的值;若不存在,请说明理由.
本小题满分12分)如图菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1) 求证:平面; (2) 求证:平面平面; (3) 求三棱锥的体积.