已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).(1)求证:不论m取什么值,圆心在同一直线l上;(2)与l平行的直线中,哪些与圆相交,相切,相离.
设函数f(x)=x2-mlnx,g(x)=x2-x+a.(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.
设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.(1)求函数f(x)的解析式;(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
如右图,由曲线与直线,,所围成平面图形的面积.
如图,在中,,斜边.可以通过 以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.(1)求证:平面平面;(2)求与平面所成角的最大角的正切值.
如图,在四棱锥中,底面是正方形,侧棱⊥底面,,是的中点,作交于点.(1)证明平面;(2)证明平面.