已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)求证:不论m取什么实数,直线l与圆C恒交于两点;(2)求直线被圆C截得的弦长最小时直线l的方程.
已知椭圆的离心率为,且过点 (1)求椭圆的标准方程: (2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若 ①求的最值: ②求证:四边形ABCD的面积为定值.
已知圆A:x2+y2-2x-2y-2=0. (1)若直线l:ax+by-4=0平分圆A的周长,求原点O到直线l的距离的最大值; (2)若圆B平分圆A的周长,圆心B在直线y=2x上,求符合条件且半径最小的圆B的方程.
如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.若P为AC上的点,且满足。 (Ⅰ)求证: (Ⅱ)求三棱锥的体积;
平面内动点到定点的距离比它到轴的距离大。 (1)求动点的轨迹的方程; (2)已知点A(3,2), 求的最小值及此时P点的坐标.
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组,,第五组.按上述分组方法得到的频率分布直方图如图所示. (1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数; (2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.