如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.(1)求椭圆C的标准方程;(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
如图,已知椭圆的离心率是,分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点是轴上位于右侧的一点,且满足. (1)求椭圆的方程以及点的坐标; (2)过点作轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.
如图,在中,,,点在边上,设,过点作交于,作交于。沿将翻折成使平面平面;沿将翻折成使平面平面. (1)求证:平面; (2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.
已知三次函数,为实常数。 (1)若时,求函数的极大、极小值; (2)设函数,其中是的导函数,若的导函数为,,与轴有且仅有一个公共点,求的最小值.
如图,是正方形所在平面外一点,且,,若、分别是、的中点. (1)求证:; (2)求点到平面的距离.
已知一条曲线在轴右侧,上每一点到点的距离减去它到轴距离的差都是1. (1)求曲线的方程; (2)设直线交曲线于两点,线段的中点为,求直线的一般式方程.