如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,=. (1) 求直线BD的方程;(2) 求直线BD被过P、A、B三点的圆C截得的弦长;(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
已知函数. (1)判断的奇偶性; (2)判断并证明的单调性,写出的值域.
设全集,. (1)若,求的取值范围; (2)若,求的取值范围.
计算: (1); (2)
在平面直角坐标平面内,已知点,,是平面内一动点,直线、斜率之积为. (1)求动点的轨迹的方程; (2)过点作直线与轨迹交于、两点,为坐标原点,求△面积取最大值时,直线的方程.
已知椭圆的离心率为,点在上. (1)求的标准方程; (2)设直线过点,当绕点旋转的过程中,与椭圆有两个交点,,求线段的中点的轨迹方程.